Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(42): 7885-7899, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36028316

RESUMO

Anterolateral system (AS) neurons transmit pain signals from the spinal cord to the brain. Their morphology, anatomy, and physiological properties have been extensively characterized and suggest that specific AS neurons and their brain targets are concerned with the discriminatory aspects of noxious stimuli, such as their location or intensity, and their motivational/emotive dimension. Among the recently unraveled molecular markers of AS neurons is the developmentally expressed transcription factor Phox2a, providing us with the opportunity to selectively disrupt the embryonic wiring of AS neurons to gain insights into the logic of their adult function. As mice with a spinal-cord-specific loss of the netrin-1 receptor deleted in colorectal carcinoma (DCC) have increased AS neuron innervation of ipsilateral brain targets and defective noxious stimulus localization or topognosis, we generated mice of either sex carrying a deletion of Dcc in Phox2a neurons. Such DccPhox2a mice displayed impaired topognosis along the rostrocaudal axis but with little effect on left-right discrimination and normal aversive responses. Anatomical tracing experiments in DccPhox2a mice revealed defective targeting of cervical and lumbar AS axons within the thalamus. Furthermore, genetic labeling of AS axons revealed their expression of DCC on their arrival in the brain, at a time when many of their target neurons are being born and express Ntn1 Our experiments suggest a postcommissural crossing function for netrin-1:DCC signaling during the formation of somatotopically ordered maps and are consistent with a discriminatory function of some of the Phox2a AS neurons.SIGNIFICANCE STATEMENT How nociceptive (pain) signals are relayed from the body to the brain remains an important question relevant to our understanding of the basic physiology of pain perception. Previous studies have demonstrated that the AS is a main effector of this function. It is composed of AS neurons located in the spinal cord that receive signals from nociceptive sensory neurons that detect noxious stimuli. In this study, we generate a genetic miswiring of mouse AS neurons that results in a decreased ability to perceive the location of a painful stimulus. The precise nature of this defect sheds light on the function of different kinds of AS neurons and how pain information may be organized.


Assuntos
Neoplasias Colorretais , Fatores de Crescimento Neural , Animais , Camundongos , Neoplasias Colorretais/metabolismo , Receptor DCC/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptores de Netrina/metabolismo , Netrina-1 , Neurônios/fisiologia , Dor/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Tálamo
2.
Pain ; 163(4): e527-e539, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471084

RESUMO

ABSTRACT: Projection neurons of the spinal cord dorsal horn which transmit pain, itch, and temperature information to the brain comprise the anterolateral system (AS). A recent molecular and genetic study showed that many developing AS neurons express the transcription factor Phox2a and provided insights into the mechanisms of their ontogeny and wiring of nociceptive neuronal circuits. Here, we show that the loss of the axonal guidance and neuronal migration signal netrin1 results in impaired migration of mouse Phox2a+ AS neurons into the spinal lamina I. Furthermore, we show that in the absence of Dab1, an intracellular transducer of the neuronal migration signal reelin, the migration of spinal lamina V and lateral spinal nucleus Phox2a+ AS neurons is impaired, in line with deficits in nociception seen in mice with a loss of reelin signaling. Together, these results provide evidence that netrin1 and reelin control the development of spinal nociceptive projection neurons, suggesting a mechanistic explanation for studies that link sequence variations in human genes encoding these neurodevelopmental signals and abnormal pain sensation.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas da Matriz Extracelular , Animais , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Proteínas de Homeodomínio , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios , Dor , Proteína Reelina , Serina Endopeptidases/genética , Medula Espinal , Corno Dorsal da Medula Espinal
3.
Cell Rep ; 33(8): 108425, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33238113

RESUMO

Anterolateral system neurons relay pain, itch, and temperature information from the spinal cord to pain-related brain regions, but the differentiation of these neurons and their specific contribution to pain perception remain poorly defined. Here, we show that most mouse spinal neurons that embryonically express the autonomic-system-associated Paired-like homeobox 2A (Phox2a) transcription factor innervate nociceptive brain targets, including the parabrachial nucleus and the thalamus. We define the Phox2a anterolateral system neuron birth order, migration, and differentiation and uncover an essential role for Phox2a in the development of relay of nociceptive signals from the spinal cord to the brain. Finally, we also demonstrate that the molecular identity of Phox2a neurons is conserved in the human fetal spinal cord, arguing that the developmental expression of Phox2a is a prominent feature of anterolateral system neurons.


Assuntos
Proteínas de Homeodomínio/metabolismo , Vias Neurais/metabolismo , Animais , Humanos , Camundongos
4.
J Cell Physiol ; 233(4): 3603-3614, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29044560

RESUMO

Our understanding of the mechanism of cell fate transition during the direct reprogramming of fibroblasts into various central nervous system (CNS) neural cell types has been limited by the lack of a comprehensive analysis on generated cells, independently and in comparison with other CNS neural cell types. Here, we applied an integrative approach on 18 independent high throughput expression data sets to gain insight into the regulation of the transcriptome during the conversion of fibroblasts into induced neural stem cells, induced neurons (iNs), induced astrocytes, and induced oligodendrocyte progenitor cells (iOPCs). We found common down-regulated genes to be mostly related to fibroblast-specific functions, and suggest their potential as markers for screening of the silencing of the fibroblast-specific program. For example, Tagln was significantly down-regulated across all considered data sets. In addition, we identified specific profiles of up-regulated genes for each CNS neural cell types, which could be potential markers for maturation and efficiency screenings. Furthermore, we identified the main TFs involved in the regulation of the gene expression program during direct reprogramming. For example, in the generation of iNs from fibroblasts, the Rest TF was the main regulator of this reprogramming. In summary, our computational approach for meta-analyzing independent expression data sets provides significant details regarding the molecular mechanisms underlying the regulation of the gene expression program, and also suggests potentially useful candidate genes for screening down-regulation of fibroblast gene expression profile, maturation, and efficiency, as well as candidate TFs for increasing the efficiency of the reprogramming process.


Assuntos
Sistema Nervoso Central/metabolismo , Fibroblastos/metabolismo , Neurônios/metabolismo , Transcriptoma/fisiologia , Animais , Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo
5.
J Cell Physiol ; 232(8): 2053-2062, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27579918

RESUMO

Ectopic expression of a defined set of transcription factors (TFs) can directly convert fibroblasts into a cardiac myocyte cell fate. Beside inefficiency in generating induced cardiomyocytes (iCMs), the molecular mechanisms that regulate this process remained to be well defined. The main purpose of this study was to provide better insight on the transcriptome regulation and to introduce a new strategy for candidating TFs for the transdifferentiation process. Eight mouse and three human high quality microarray data sets were analyzed to find differentially expressed genes (DEGs), which we integrated with TF-binding sites and protein-protein interactions to construct gene regulatory and protein-protein interaction networks. Topological and biological analyses of constructed gene networks revealed the main regulators and most affected biological processes. The DEGs could be categorized into two distinct groups, first, up-regulated genes that are mainly involved in cardiac-specific processes and second, down-regulated genes that are mainly involved in fibroblast-specific functions. Gata4, Mef2a, Tbx5, Tead4 TFs were identified as main regulators of cardiac-specific gene expression program; and Trp53, E2f1, Myc, Sfpi1, Lmo2, and Meis1 were identified as TFs which mainly regulate the expression of fibroblast-specific genes. Furthermore, we compared gene expression profiles and identified TFs between mouse and human to find the similarities and differences. In summary, our strategy of meta-analyzing the data of high-throughput techniques by computational approaches, besides revealing the mechanisms involved in the regulation of the gene expression program, also suggests a new approach for increasing the efficiency of the direct reprogramming of fibroblasts into iCMs. J. Cell. Physiol. 232: 2053-2062, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Linhagem da Célula , Transdiferenciação Celular , Fibroblastos/metabolismo , Cardiopatias/genética , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Animais , Reprogramação Celular , Biologia Computacional , Bases de Dados Genéticas , Fibroblastos/patologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Camundongos , Miócitos Cardíacos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Mapas de Interação de Proteínas , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
PLoS One ; 11(11): e0167081, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27902735

RESUMO

Direct reprogramming using defined sets of transcription factors (TFs) is a recent strategy for generating induced hepatocytes (iHeps) from fibroblasts for use in regenerative medicine and drug development. Comprehensive studies detailing the regulatory role of TFs during this reprogramming process could help increase its efficiency. This study aimed to find the TFs with the greatest influences on the generation of iHeps from fibroblasts, and to further understand their roles in the regulation of the gene expression program. Here, we used systems biology approaches to analyze high quality expression data sets in combination with TF-binding sites data and protein-protein interactions data during the direct reprogramming of fibroblasts to iHeps. Our results revealed two main patterns for differentially expressed genes (DEGs): up-regulated genes were categorized as hepatic-specific pattern, and down-regulated genes were categorized as mesoderm- and fibroblast-specific pattern. Interestingly, hepatic-specific genes co-expressed and were regulated by hepatic-specific TFs, specifically Hnf4a and Foxa2. Conversely, the mesoderm- and fibroblast-specific pattern was mainly silenced by polycomb repressive complex 2 (PRC2) members, including Suz12, Mtf2, Ezh2, and Jarid2. Independent analysis of both the gene and core regulatory network of DE-TFs showed significant roles for Hnf4a, Foxa2, and PRC2 members in the regulation of the gene expression program and in biological processes during the direct conversion process. Altogether, using systems biology approaches, we clarified the role of Hnf4a and Foxa2 as hepatic-specific TFs, and for the first time, introduced the PRC2 complex as the main regulator that favors the direct reprogramming process in cooperation with hepatic-specific factors.


Assuntos
Reprogramação Celular , Fibroblastos/citologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/metabolismo , Redes Reguladoras de Genes , Humanos , Especificidade de Órgãos , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...